417 research outputs found

    Do we need N3^3LO Parton Distributions?

    Get PDF
    We discuss the uncertainty on processes computed using next-to-next-to leading (NNLO) parton distributions (PDFs) due to the neglect of higher order perturbative corrections in the PDF determination, in the specific case of Higgs production in gluon fusion. By studying the behaviour of the perturbative series for this process, we show that this uncertainty is negligible in comparison to the theoretical uncertainty on the matrix element. We then take this as a case study for the use of the Cacciari-Houdeau method for the estimate of theoretical uncertainties, and show that the method provides an effective way of treating theoretical uncertainties on the matrtix element and the PDF on the same footing.Comment: 10 pages 5 figures. Final version, to be published in Phys. Lett. B. Comparison with top production (figs 4-5) added. Several typos corrected and references updated. Grant info adde

    Solving the Altarelli-Parisi equations with truncated moments

    Get PDF
    The technique of truncated moments of parton distributions allows us to study scaling violations without making any assumption on the shape of parton distributions. The numerical implementation of the method is however difficult, since the evolution equations for truncated moments are not diagonal. We present a simple way to improve the efficiency of the numerical solution of the evolution equations for truncated moments. As a result, the number of truncated moments needed to achieve the required precision in the evolution is significantly smaller than in the original formulation of the technique. The method presented here can also be used to obtain the value of parton distributions in terms of truncated moments, and therefore it can be viewed as a technique for the solution of the Altarelli-Parisi equations.Comment: 10 pages Late

    Evolution of truncated moments of singlet parton distributions

    Get PDF
    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x_0 < x < 1 of the allowed kinematic range 0 < x < 1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology.Comment: 23 pages, 6 figures, LaTeX; factors of 2nf in Appendix C correcte

    Are anonymity-seekers just like everybody else? An analysis of contributions to Wikipedia from Tor

    Full text link
    User-generated content sites routinely block contributions from users of privacy-enhancing proxies like Tor because of a perception that proxies are a source of vandalism, spam, and abuse. Although these blocks might be effective, collateral damage in the form of unrealized valuable contributions from anonymity seekers is invisible. One of the largest and most important user-generated content sites, Wikipedia, has attempted to block contributions from Tor users since as early as 2005. We demonstrate that these blocks have been imperfect and that thousands of attempts to edit on Wikipedia through Tor have been successful. We draw upon several data sources and analytical techniques to measure and describe the history of Tor editing on Wikipedia over time and to compare contributions from Tor users to those from other groups of Wikipedia users. Our analysis suggests that although Tor users who slip through Wikipedia's ban contribute content that is more likely to be reverted and to revert others, their contributions are otherwise similar in quality to those from other unregistered participants and to the initial contributions of registered users.Comment: To appear in the IEEE Symposium on Security & Privacy, May 202

    Neural network approach to parton distributions fitting

    Full text link
    We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.Comment: 4 pages, 5 eps figures. Talk given by Andrea Piccione at the "X International Workshop on Advanced Computing and Analysis Techniques in Physics Research", ACAT 2005, DESY-Zeuthen, Germany, 22-27 May 2005. Corrected fig.

    Determination of alpha_s from scaling violations of truncated moments of structure functions

    Full text link
    We determine the strong coupling alpha_s(M_Z) from scaling violations of truncated moments of the nonsinglet deep inelastic structure function F_2. Truncated moments are determined from BCDMS and NMC data using a neural network parametrization which retains the full experimental information on errors and correlations. Our method minimizes all sources of theoretical uncertainty and bias which characterize extractions of alpha_s from scaling violations. We obtain alpha_s(M_Z) = 0.124 +0.004-0.007 (exp.) + 0.003- 0.004 (th.).Comment: 24 pages, 4 figures, latex with epsfig; neural network parametrization available from http://sophia.ecm.ub.es/f2neura

    Cooperation Between Stations in Wireless Networks

    Get PDF
    In a wireless network, mobile nodes (MNs) repeatedly perform tasks such as layer 2 (L2) handoff, layer 3 (L3) handoff and authentication. These tasks are critical, particularly for real-time applications such as VoIP. We propose a novel approach, namely Cooperative Roaming (CR), in which MNs can collaborate with each other and share useful information about the network in which they move. We show how we can achieve seamless L2 and L3 handoffs regardless of the authentication mechanism used and without any changes to either the infrastructure or the protocol. In particular, we provide a working implementation of CR and show how, with CR, MNs can achieve a total L2+L3 handoff time of less than 16 ms in an open network and of about 21 ms in an IEEE 802.11i network. We consider behaviors typical of IEEE 802.11 networks, although many of the concepts and problems addressed here apply to any kind of mobile network

    Neural network determination of parton distributions: the nonsinglet case

    Get PDF
    We provide a determination of the isotriplet quark distribution from available deep--inelastic data using neural networks. We give a general introduction to the neural network approach to parton distributions, which provides a solution to the problem of constructing a faithful and unbiased probability distribution of parton densities based on available experimental information. We discuss in detail the techniques which are necessary in order to construct a Monte Carlo representation of the data, to construct and evolve neural parton distributions, and to train them in such a way that the correct statistical features of the data are reproduced. We present the results of the application of this method to the determination of the nonsinglet quark distribution up to next--to--next--to--leading order, and compare them with those obtained using other approaches.Comment: 46 pages, 18 figures, LaTeX with JHEP3 clas
    • 

    corecore